Chapter 1. Типы данных С++

Код программы и данные, которыми программа манипулирует, записываются в память компьютера в виде последовательности битов. Бит – это мельчайший элемент компьютерной памяти, способная хранить либо 0, либо 1. На физическом уровне это соответствует электрическому напряжению, которое, как известно, либо есть , либо нет. Посмотрев на содержимое памяти компьютера, мы увидим что-нибудь вроде:

00011011011100010110010000111011 ...

Очень трудно придать такой последовательности смысл, но иногда нам приходится манипулировать и подобными неструктурированными данными (обычно нужда в этом возникает при программировании драйверов аппаратных устройств). С++ предоставляет набор операций для работы с битовыми данными.

Как правило, на последовательность битов накладывают какую-либо структуру, группируя биты в байты и слова. Байт содержит 8 бит, а слово – 4 байта, или 32 бита. Однако определение слова может быть разным в разных операционных системах. Сейчас начинается переход к 64-битным системам, а еще недавно были распространены системы с 16-битными словами. Хотя в подавляющем большинстве систем размер байта одинаков, мы все равно будем называть эти величины машинно-зависимыми.

Теперь мы можем говорить, например, о байте с адресом 1040 или о слове с адресом 1024 и утверждать, что байт с адресом 1032 не равен байту с адресом 1040.

Однако мы не знаем, что же представляет собой какой-либо байт, какое-либо машинное слово. Как понять смысл тех или иных 8 бит? Для того чтобы однозначно интерпретировать значение этого байта (или слова, или другого набора битов), мы должны знать тип данных, представляемых данным байтом.

С++ предоставляет набор встроенных типов данных: символьный, целый, вещественный – и набор составных и расширенных типов: строки, массивы, комплексные числа. Кроме того, для действий с этими данными имеется базовый набор операций: сравнение, арифметические и другие операции. Есть также операторы переходов, циклов, условные операторы. Эти элементы языка С++ составляют тот набор кирпичиков, из которых можно построить систему любой сложности. Первым шагом в освоении С++ станет изучение перечисленных базовых элементов, чему и посвящена часть II данной книги.

Глава 3 содержит обзор встроенных и расширенных типов, а также механизмов, с помощью которых можно создавать новые типы с помощью классов. В главе 4 рассматриваются выражения, встроенные операции и их приоритеты, преобразования типов. В главе 5 рассказывается об инструкциях языка. И наконец глава 6 представляет стандартную библиотеку С++ и контейнерные типы – вектор и ассоциативный массив.

В этой главе приводится обзор встроенных, или элементарных, типов данных языка С++. Она начинается с определения литералов, таких, как 3.14159 или pi, а затем вводится понятие переменной, или объекта, который должен принадлежать к одному из типов данных. Оставшаяся часть главы посвящена подробному описанию каждого встроенного типа. Кроме того, приводятся производные типы данных для строк и массивов, предоставляемые стандартной библиотекой С++. Хотя эти типы не являются элементарными, они очень важны для написания настоящих программ на С++, и нам хочется познакомить с ними читателя как можно раньше. Мы будем называть такие типы данных расширением базовых типов С++.

Content

§ 1.1. Литералы

§ 1.2. Переменные

§ 1.3. Указатели

§ 1.4. Строковые типы

§ 1.5. Спецификатор const

§ 1.6. Ссылочный тип

§ 1.7. Тип bool

§ 1.8. Перечисления

§ 1.9. Тип массив

§ 1.10. Взаимосвязь массивов и указателей

§ 1.11. Класс std::vector

§ 1.12. Класс complex

§ 1.13. Директива typedef

§ 1.14. Спецификатор volatile

§ 1.15. Класс pair

§ 1.16. Типы классов

§ 1.1. Литералы

В С++ имеется набор встроенных типов данных для представления целых и вещественных чисел, символов, а также тип данных символьный массив, который служит для хранения символьных строк. Тип char служит для хранения отдельных символов и небольших целых чисел. Он занимает один машинный байт. Типы short, int и long предназначены для представления целых чисел. Эти типы различаются только диапазоном значений, которые могут принимать числа, а конкретные размеры перечисленных типов зависят от реализации. Обычно short занимает половину машинного слова, int – одно слово, long – одно или два слова. В 32-битных системах int и long, как правило, одного размера.

Типы float, double и long double предназначены для чисел с плавающей точкой и различаются точностью представления (количеством значащих разрядов) и диапазоном. Обычно float (одинарная точность) занимает одно машинное слово, double (двойная точность) – два, а long double (расширенная точность) – три.

char, short, int и long вместе составляют целые типы, которые, в свою очередь, могут быть знаковыми (signed) и беззнаковыми (unsigned). В знаковых типах самый левый бит служит для хранения знака (0 – плюс, 1 – минус), а оставшиеся биты содержат значение. В беззнаковых типах все биты используются для значения. 8-битовый тип signed char может представлять значения от -128 до 127, а unsigned char – от 0 до 255.

Когда в программе встречается некоторое число, например 1, то это число называется литералом, или литеральной константой. Константой, потому что мы не можем изменить его значение, и литералом, потому что его значение фигурирует в тексте программы. Литерал является неадресуемой величиной: хотя реально он, конечно, хранится в памяти машины, нет никакого способа узнать его адрес. Каждый литерал имеет определенный тип. Так, 0 имеет тип int, 3.14159 – тип double.

Литералы целых типов можно записать в десятичном, восьмеричном и шестнадцатеричном виде. Вот как выглядит число 20, представленное десятичным, восьмеричным и шестнадцатеричным литералами:

20 // десятичный

024 // восьмеричный

0х14 // шестнадцатеричный

Если литерал начинается с 0, он трактуется как восьмеричный, если с 0х или 0Х, то как шестнадцатеричный. Привычная запись рассматривается как десятичное число.

По умолчанию все целые литералы имеют тип signed int. Можно явно определить целый литерал как имеющий тип long, приписав в конце числа букву L (используется как прописная L, так и строчная l, однако для удобства чтения не следует употреблять строчную: ее легко перепутать с

1). Буква U (или u) в конце определяет литерал как unsigned int, а две буквы – UL или LU – как тип unsigned long. Например:

128u 1024UL 1L 8Lu

Литералы, представляющие действительные числа, могут быть записаны как с десятичной точкой, так и в научной (экспоненциальной) нотации. По умолчанию они имеют тип double. Для явного указания типа float нужно использовать суффикс F или f, а для long double - L или l, но только в случае записи с десятичной точкой. Например:

3.14159F 0/1f 12.345L 0.0
3el 1.0E-3E 2. 1.0L

Слова true и false являются литералами типа bool.

Представимые литеральные символьные константы записываются как символы в одинарных кавычках. Например:

'a' '2' ',' ' ' (пробел)

Специальные символы (табуляция, возврат каретки) записываются как escape-последовательности . Определены следующие такие последовательности (они начинаются с символа обратной косой черты):

новая строка \n
горизонтальная табуляция \t
забой \b
вертикальная табуляция \v
возврат каретки \r
прогон листа \f
звонок \a
обратная косая черта \\
вопрос \?
одиночная кавычка \'
двойная кавычка \"

escape-последовательность общего вида имеет форму \ooo, где ooo – от одной до трех восьмеричных цифр. Это число является кодом символа. Используя ASCII-код, мы можем написать следующие литералы:

\7 (звонок) \14 (новая строка)
\0 (null) \062 ('2')

Символьный литерал может иметь префикс L (например, L'a'), что означает специальный тип wchar_t – широкий символьный тип (wide char), который применяется для хранения символов национальных алфавитов, если они не могут быть представлены обычным типом char, как, например, китайские или японские буквы. Имеет размер 2 или 4 байта.

Строковый литерал – строка символов, заключенная в двойные кавычки. Такой литерал может занимать и несколько строк, в этом случае в конце строки ставится обратная косая черта. Специальные символы могут быть представлены своими escape-последовательностями. Вот примеры строковых литералов:

"" (пустая строка)
"a"
"\nCC\toptions\tfile.[cC]\n"
"a multi-line \
string literal signals its \
continuation with a backslash"

Фактически строковый литерал представляет собой массив символьных констант, где по соглашению языков С и С++ последним элементом всегда является специальный символ с кодом 0 (\0).

Литерал 'A' задает единственный символ А, а строковый литерал "А" – массив из двух элементов: 'А' и \0 (пустого символа).

Раз существует тип wchar_t, существуют и литералы этого типа, обозначаемые, как и в случае с отдельными символами, префиксом L:

L"a wide string literal"

Строковый литерал типа wchar_t – это массив символов того же типа, завершенный нулем.

Если в тесте программы идут подряд два или несколько строковых литералов (типа char или wchar_t), компилятор соединяет их в одну строку. Например, следующий текст

"two" "some"

породит массив из восьми символов – twosome и завершающий нулевой символ. Результат конкатенации строк разного типа не определен. Если написать:

// this is not a good idea
"two" L"some"

то на каком-то компьютере результатом будет некоторая осмысленная строка, а на другом может оказаться нечто совсем иное. Программы, использующие особенности реализации того или иного компилятора или операционной системы, являются непереносимыми. Мы крайне не рекомендуем пользоваться такими конструкциями.

Упражнение 3.1: Объясните разницу в определениях следующих литералов:

'a', L'a', "a", L"a"
10, 10u, 10L, 10uL, 012, 0*C
3.14, 3.14f, 3.14L

Упражнение 3.2 Какие ошибки допущены в приведенных ниже примерах?

(a) "Who goes with F\144rgus?\014"
(b) 3.14e1L
(c) "two" L"some"
(d) 1024f
(e) 3.14UL
(f) "multiple line
     comment"

§ 1.2. Переменные

Представим себе, что мы решаем задачу возведения 2 в степень 10. Пишем:

#include <iostream>

int main() {
   // a first solution
   std::cout << "2 raised to the power of 10: ";
   std::cout << 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2;
   std::cout << std::endl;
   return 0;
}

Задача решена, хотя нам и пришлось неоднократно проверять, действительно ли 10 раз повторяется литерал 2. Мы не ошиблись в написании этой длинной последовательности двоек, и программа выдала правильный результат – 1024.

Но теперь нас попросили возвести 2 в 17 степень, а потом в 23. Чрезвычайно неудобно каждый раз модифицировать текст программы! И, что еще хуже, очень просто ошибиться, написав лишнюю двойку или пропустив ее... А что делать, если нужно напечатать таблицу степеней двойки от 0 до 15? 16 раз повторить две строки, имеющие общий вид:

std::cout << "2 в степени X\t";
std::cout << 2 * ... * 2;

где Х последовательно увеличивается на 1, а вместо отточия подставляется нужное число литералов?

Да, мы справились с задачей. Заказчик вряд ли будет вникать в детали, удовлетворившись полученным результатом. В реальной жизни такой подход достаточно часто срабатывает, более того, бывает оправдан: задача решена далеко не самым изящным способом, зато в желаемый срок. Искать более красивый и грамотный вариант может оказаться непрактичной тратой времени.

В данном случае метод грубой силы дает правильный ответ, но как же неприятно и скучно решать задачу подобным образом! Мы точно знаем, какие шаги нужно сделать, но сами эти шаги просты и однообразны.

Привлечение более сложных механизмов для той же задачи, как правило, значительно увеличивает время подготовительного этапа. Кроме того, чем более сложные механизмы применяются, тем больше вероятность ошибок. Но даже несмотря на неизбежные ошибки и неверные ходы, применение высоких технологий может принести выигрыш в скорости разработки, не говоря уже о том, что эти технологии значительно расширяют наши возможности. И – что интересно! – сам процесс решения может стать привлекательным.

Вернемся к нашему примеру и попробуем технологически усовершенствовать его реализацию. Мы можем воспользоваться именованным объектом для хранения значения степени, в которую нужно возвести наше число. Кроме того, вместо повторяющейся последовательности литералов применим оператор цикла. Вот как это будет выглядеть:

#include <iostream>

int main() {
   // objects of type int
   int value = 2;
   int pow = 10;

   std::cout << value << " в степени " << pow << ": \t";

   int res = 1;

   // оператор цикла:
   // повторить вычисление res
   // до тех пор пока cnt не станет больше pow
   for (int cnt=1; cnt <= pow; ++cnt)
      res = res * value;

   std::cout << res << std::endl;
}

value, pow, res и cnt – это переменные, которые позволяют хранить, модифицировать и извлекать значения. Оператор цикла for повторяет строку вычисления результата pow раз.

Несомненно, мы создали гораздо более гибкую программу. Однако это все еще не функция. Чтобы получить настоящую функцию, которую можно использовать в любой программе для вычисления степени числа, нужно выделить общую часть вычислений, а конкретные значения задать параметрами.

int pow(int val, int exp) {
    for (int res = 1; exp > 0; --exp)
        res = res * val;
    return res;
}

Теперь получить любую степень нужного числа не составит никакого труда. Вот как реализуется последняя наша задача – напечатать таблицу степеней двойки от 0 до 15:

#include <iostream>

extern int pow(int,int);

int main() {
   int val = 2;
   int exp = 15;

   std::cout << "Степени 2\n";
   for (int cnt=0; cnt <= exp; ++cnt)
      std::cout << cnt << ": " << pow(val, cnt) << std::endl;

   return 0;
}

Конечно, наша функция pow() все еще недостаточно обобщена и недостаточно надежна. Она не может оперировать вещественными числами, неправильно возводит числа в отрицательную степень – всегда возвращает 1. Результат возведения большого числа в большую степень может не поместиться в переменную типа int, и тогда будет возвращено некоторое случайное неправильное значение. Видите, как непросто, оказывается, писать функции, рассчитанные на широкое применение? Гораздо сложнее, чем реализовать конкретный алгоритм, направленный на решение конкретной задачи.

3.2.1. Что такое переменная

Переменная, или объект – это именованная область памяти, к которой мы имеем доступ из программы; туда можно помещать значения и затем извлекать их. Каждая переменная С++ имеет определенный тип, который характеризует размер и расположение этой области памяти, диапазон значений, которые она может хранить, и набор операций, применимых к этой переменной. Вот пример определения пяти объектов разных типов:

int student_count;
double salary;
bool on_loan;
std::string street_address;
char delimiter;

Переменная, как и литерал, имеет определенный тип и хранит свое значение в некоторой области памяти. Адресуемость – вот чего не хватает литералу. С переменной ассоциируются две величины:

В выражении

ch = ch - '0';

переменная ch находится и слева и справа от символа операции присваивания. Справа расположено значение для чтения (ch и символьный литерал '0'): ассоциированные с переменной данные считываются из соответствующей области памяти. Слева – значение местоположения: в область памяти, соотнесенную с переменной ch, помещается результат вычитания. В общем случае левый операнд операции присваивания должен быть l-значением. Мы не можем написать следующие выражения:

// ошибки компиляции: значения слева не являются l-значениями
// ошибка: литерал - не l-значение
0 = 1;
// ошибка: арифметическое выражение - не l-значение
salary + salary * 0.10 = new_salary;

Оператор определения переменной выделяет для нее память. Поскольку объект имеет только одну ассоциированную с ним область памяти, такой оператор может встретиться в программе только один раз. Если же переменная, определенная в одном исходном файле, должна быть использована в другом, появляются проблемы. Например:

// файл module0.cpp
// определяет объект fileName
std::string fileName;
// ... присвоить fileName значение

// файл module1.cpp
// использует объект fileName

// увы, не компилируется:
// fileName не определен в module1.cpp
ifstream input_file(fileName);

С++ требует, чтобы объект был известен до первого обращения к нему. Это вызвано необходимостью гарантировать правильность использования объекта в соответствии с его типом. В нашем примере модуль module1.cpp вызовет ошибку компиляции, поскольку переменная fileName не определена в нем. Чтобы избежать этой ошибки, мы должны сообщить компилятору об уже определенной переменной fileName. Это делается с помощью инструкции объявления переменной:

// файл module1.cpp
// использует объект fileName
// fileName объявляется, то есть программа получает
// информацию об этом объекте без вторичного его определения
extern std::string fileName;
ifstream input_file(fileName)

Объявление переменной сообщает компилятору, что объект с данным именем, имеющий данный тип, определен где-то в программе. Память под переменную при ее объявлении не отводится (ключевое слово extern).

Программа может содержать сколько угодно объявлений одной и той же переменной, но определить ее можно только один раз. Такие объявления удобно помещать в заголовочные файлы, включая их в те модули, которые этого требуют. Так мы можем хранить информацию об объектах в одном месте и обеспечить удобство ее модификации в случае надобности.

3.2.2. Имя переменной

Имя переменной, или идентификатор, может состоять из латинских букв, цифр и символа подчеркивания. Прописные и строчные буквы в именах различаются. Язык С++ не ограничивает длину идентификатора, однако пользоваться слишком длинными именами типа gosh_this_is_an_impossibly_name_to_type неудобно.

Некоторые слова являются ключевыми в С++ и не могут быть использованы в качестве идентификаторов; в таблице 3.1 приведен их полный список.

Table 1.1: Ключевые слова C++
asm auto bool break case
catch char class const const_cast
continue default delete do double
dynamic_cast else enum explicit export
extern false float for friend
goto goto inline int long
mutable namespace new operator private
protected public register reinterpret_cast return
short signed sizeof static static_cast
short short signed sizeof static static_cast
struct switch template this throw
typedef true try typeid typename
union volatile using virtual void

Чтобы текст вашей программы был более понятным, мы рекомендуем придерживаться общепринятых соглашений об именах объектов:

если такое имя состоит из нескольких слов, как, например, birth_date, то принято либо разделять слова символом подчеркивания (birth_date), либо писать каждое следующее слово с большой буквы (birthDate). Замечено, что программисты, привыкшие к ОбъектноОриентированномуПодходу предпочитают выделять слова заглавными буквами, в то время как те_кто_много_писал_на_С используют символ подчеркивания. Какой из двух способов лучше – вопрос вкуса.

3.2.3. Определение объекта

В самом простом случае оператор определения объекта состоит из спецификатора типа и имени объекта и заканчивается точкой с запятой. Например:

double salary;
double wage;
int month;
int day;
int year;
unsigned long distance;

В одном операторе можно определить несколько объектов одного типа. В этом случае их имена перечисляются через запятую:

double salary, wage;
int month,
    day, year;
unsigned long distance;

Простое определение переменной не задает ее начального значения. Если объект определен как глобальный, спецификация С++ гарантирует, что он будет инициализирован нулевым значением. Если же переменная локальная либо динамически размещаемая (с помощью оператора new), ее начальное значение не определено, то есть она может содержать некоторое случайное значение.

Использование подобных переменных – очень распространенная ошибка, которую к тому же трудно обнаружить. Рекомендуется явно указывать начальное значение объекта, по крайней мере в тех случаях, когда неизвестно, может ли объект инициализировать сам себя. Механизм классов вводит понятие конструктора по умолчанию, который служит для присвоения значений по умолчанию.

int main() {
  // неинициализированный локальный объект
  int ival;

  // объект типа std::string инициализирован
  // конструктором по умолчанию
  std::string project;

  // ...
}

Начальное значение может быть задано прямо в операторе определения переменной. В С++ допустимы две формы инициализации переменной – явная, с использованием оператора присваивания:

int ival = 1024;
std::string project = "Fantasia 2000";

и неявная, с заданием начального значения в скобках:

int ival(1024);
std::string project("Fantasia 2000");

Оба варианта эквивалентны и задают начальные значения для целой переменной ival как 1024 и для строки project как "Fantasia 2000".

Явную инициализацию можно применять и при определении переменных списком:

double salary = 9999.99, wage = salary + 0.01;
int month = 08;
    day = 07, year = 1955;

Переменная становится видимой (и допустимой в программе) сразу после ее определения, поэтому мы могли проинициализировать переменную wage суммой только что определенной переменной salary с некоторой константой. Таким образом, определение:

// корректно, но бессмысленно
int bizarre = bizarre;

является синтаксически допустимым, хотя и бессмысленным.

Встроенные типы данных имеют специальный синтаксис для задания нулевого значения:

// ival получает значение 0, а dval - 0.0
int ival = int();
double dval = double();

В следующем определении:

// int() применяется к каждому из 10 элементов
std::vector<int> ivec(10);

к каждому из десяти элементов вектора применяется инициализация с помощью int().

Переменная может быть инициализирована выражением любой сложности, включая вызовы функций. Например:

#include <cmath>
#include <string>

double price = 109.99, discount = 0.16;
double sale_price(price * discount);

std::string pet("wrinkles");
extern int get_value();
int val = get_value();

unsigned abs_val = abs(val);

abs() – стандартная функция, возвращающая абсолютное значение параметра.

get_value()– некоторая пользовательская функция, возвращающая целое значение.

Упражнение 3.3: Какие из приведенных ниже определений переменных содержат синтаксические ошибки?

(a) int car = 1024, auto = 2048;
(b) int ival = ival;
(c) int ival(int());
(d) double salary = wage = 9999.99;
(e) std::cin >> int input_value;

Упражнение 3.4: Объясните разницу между l-значением и r-значением. Приведите примеры.

Упражнение 3.5: Найдите отличия в использовании переменных name и student в первой и второй строчках каждого примера:

(a) extern std::string name;
    std::string name("exercise 3.5a");

(b) extern std::vector<std::string> students;
    std::vector<std::string> students;

Упражнение 3.6: Какие имена объектов недопустимы в С++? Измените их так, чтобы они стали синтаксически правильными:

(a) int double = 3.14159;
(b) std::vector<int> _;
(c) std::string namespase;
(d) std::string catch-22;
(e) char 1_or_2 = '1';
(f) float Float = 3.14f;

Упражнение 3.7: В чем разница между следующими глобальными и локальными определениями переменных?

std::string global_class;
int global_int;
int main() {
  int local_int;
  std::string local_class;
   // ...
}

§ 1.3. Указатели

Указатель – это объект, содержащий адрес другого объекта и позволяющий косвенно манипулировать этим объектом. Обычно указатели используются для работы с динамически созданными объектами, для построения связанных структур данных, таких, как связанные списки и иерархические деревья, и для передачи в функции больших объектов – массивов и объектов классов – в качестве параметров.

Каждый указатель ассоциируется с некоторым типом данных, причем их внутреннее представление не зависит от внутреннего типа: и размер памяти, занимаемый объектом типа указатель, и диапазон значений у них одинаков . Разница состоит в том, как компилятор воспринимает адресуемый объект. Указатели на разные типы могут иметь одно и то же значение, но область памяти, где размещаются соответствующие типы, может быть различной:

Вот несколько примеров:

int              *ip1, *ip2;
complex<double>  *cp;
std::string           *pstring;
std::vector<int>      *pvec;
double           *dp;

Указатель обозначается звездочкой перед именем. В определении переменных списком звездочка должна стоять перед каждым указателем (см. выше: ip1 и ip2). В примере ниже lp – указатель на объект типа long, а lp2 – объект типа long:

long *lp, lp2;

В следующем случае fp интерпретируется как объект типа float, а fp2 – указатель на него:

float fp, *fp2;

Оператор разыменования (*) может отделяться пробелами от имени и даже непосредственно примыкать к ключевому слову типа. Поэтому приведенные определения синтаксически правильны и совершенно эквивалентны:

std::string *ps;
std::string* ps;

Однако рекомендуется использовать первый вариант написания: второй способен ввести в заблуждение, если добавить к нему определение еще одной переменной через запятую:

//внимание: ps2 не указатель на строку!
std::string* ps, ps2;

Можно предположить, что и ps, и ps2 являются указателями, хотя указатель – только первый из них.

Если значение указателя равно 0, значит, он не содержит никакого адреса объекта.

Пусть задана переменная типа int:

int ival = 1024;

Ниже приводятся примеры определения и использования указателей на int pi и pi2:

//pi инициализирован нулевым адресом
int *pi = 0;

// pi2 инициализирован адресом ival
int *pi2 = &ival;

// правильно: pi и pi2 содержат адрес ival
pi = pi2;

// pi2 содержит нулевой адрес
pi2 = 0;

Указателю не может быть присвоена величина, не являющаяся адресом:

// ошибка: pi не может принимать значение int
pi = ival

Точно так же нельзя присвоить указателю одного типа значение, являющееся адресом объекта другого типа. Если определены следующие переменные:

double dval;
double *ps = &dval;

то оба выражения присваивания, приведенные ниже, вызовут ошибку компиляции:

// ошибки компиляции
// недопустимое присваивание типов данных: int* <== double*
pi = pd
pi = &dval;

Дело не в том, что переменная pi не может содержать адреса объекта dval – адреса объектов разных типов имеют одну и ту же длину. Такие операции смешения адресов запрещены сознательно, потому что интерпретация объектов компилятором зависит от типа указателя на них.

Конечно, бывают случаи, когда нас интересует само значение адреса, а не объект, на который он указывает (допустим, мы хотим сравнить этот адрес с каким-то другим). Для разрешения таких ситуаций введен специальный указатель void, который может указывать на любой тип данных, и следующие выражения будут правильны:

// правильно: void* может содержать
// адреса любого типа
void *pv = pi;
pv = pd;

Тип объекта, на который указывает void*, неизвестен, и мы не можем манипулировать этим объектом. Все, что мы можем сделать с таким указателем, – присвоить его значение другому указателю или сравнить с какой-либо адресной величиной.

Для того чтобы обратиться к объекту, имея его адрес, нужно применить операцию разыменования, или косвенную адресацию, обозначаемую звездочкой (*). Имея следующие определения переменных:

int ival = 1024;, ival2 = 2048;
int *pi = &ival;

мы можем читать и сохранять значение ival, применяя операцию разыменования к указателю pi:

// косвенное присваивание переменной ival значения ival2
*pi = ival2;

// косвенное использование переменной ival как rvalue и lvalue
*pi = abs(*pi); // ival = abs(ival);
*pi = *pi + 1; // ival = ival + 1;

Когда мы применяем операцию взятия адреса (&) к объекту типа int, то получаем результат типа int*

int *pi = &ival;

Если ту же операцию применить к объекту типа int* (указатель на int), мы получим указатель на указатель на int, т.е. int**. int** – это адрес объекта, который содержит адрес объекта типа int. Разыменовывая ppi, мы получаем объект типа int*, содержащий адрес ival. Чтобы получить сам объект ival, операцию разыменования к ppi необходимо применить дважды.

int **ppi = &pi;
int *pi2 = *ppi;

std::cout << "Значение ival\n"
     << "явное значение: " << ival << "\n"
     << "косвенная адресация: " << *pi << "\n"
     << "дважды косвенная адресация: " << **ppi << "\n"

     << std::endl;

Указатели могут быть использованы в арифметических выражениях. Обратите внимание на следующий пример, где два выражения производят совершенно различные действия:

int i, j, k;
int *pi = &i;
// i = i + 2
*pi = *pi + 2;
// увеличение адреса, содержащегося в pi, на 2
pi = pi + 2;

К указателю можно прибавлять целое значение, можно также вычитать из него. Прибавление к указателю 1 увеличивает содержащееся в нем значение на размер области памяти, отводимой объекту соответствующего типа. Если тип char занимает 1 байт, int – 4 и double – 8, то прибавление 2 к указателям на char, int и double увеличит их значение соответственно на 2, 8 и 16. Как это можно интерпретировать? Если объекты одного типа расположены в памяти друг за другом, то увеличение указателя на 1 приведет к тому, что он будет указывать на следующий объект. Поэтому арифметические действия с указателями чаще всего применяются при обработке массивов; в любых других случаях они вряд ли оправданы.

Вот как выглядит типичный пример использования адресной арифметики при переборе элементов массива с помощью итератора:

int ia[10];
int *iter = &ia[0];
int *iter_end = &ia[10];

while (iter != iter_end) {
  do_something_with_value (*iter);
  ++iter;
}

Упражнение 3.8

Даны определения переменных:

int ival = 1024, ival2 = 2048;
int *pi1 = &ival, *pi2 = &ival2, **pi3 = 0;

Что происходит при выполнении нижеследующих операций присваивания? Допущены ли в данных примерах ошибки?

(a) ival = *pi3; (e) pi1 = *pi3;
(b) *pi2 = *pi3; (f) ival = *pi1;
(c) ival = pi2; (g) pi1 = ival;
(d) pi2 = *pi1; (h) pi3 = &pi2;

Упражнение 3.9

Работа с указателями – один из важнейших аспектов С и С++, однако в ней легко допустить ошибку. Например, код

pi = &ival;
pi = pi + 1024;

почти наверняка приведет к тому, что pi будет указывать на случайную область памяти. Что делает этот оператор присваивания и в каком случае он не приведет к ошибке?

Упражнение 3.10

Данная программа содержит ошибку, связанную с неправильным использованием указателей:

int foobar(int *pi) {
   *pi = 1024;
   return *pi;
}

int main() {
   int *pi2 = 0;
  int ival = foobar(pi2);
  return 0;
}

В чем состоит ошибка? Как можно ее исправить?

Упражнение 3.11: Ошибки из предыдущих двух упражнений проявляются и приводят к фатальным последствиям из-за отсутствия в С++ проверки правильности значений указателей во время работы программы. Как вы думаете, почему такая проверка не была реализована? Можете ли вы предложить некоторые общие рекомендации для того, чтобы работа с указателями была более безопасной?

§ 1.4. Строковые типы

В С++ поддерживаются два типа строк – встроенный тип, доставшийся от С, и класс std::string из стандартной библиотеки С++. Класс std::string предоставляет гораздо больше возможностей и поэтому удобней в применении, однако на практике нередки ситуации, когда необходимо пользоваться встроенным типом либо хорошо понимать, как он устроен. (Одним из примеров может являться разбор параметров командной строки, передаваемых в функцию main())

3.4.1. Встроенный строковый тип

Как уже было сказано, встроенный строковый тип перешел к С++ по наследству от С. Строка символов хранится в памяти как массив, и доступ к ней осуществляется при помощи указателя типа char*. Стандартная библиотека С предоставляет набор функций для манипулирования строками. Например:

// возвращает длину строки
int strlen(const char*);

// сравнивает две строки
int strcmp(const char*, const char*);

// копирует одну строку в другую
char* strcpy(char*, const char*);

Стандартная библиотека С является частью библиотеки С++. Для ее использования мы должны включить заголовочный файл:

#include <cstring>

Указатель на char, с помощью которого мы обращаемся к строке, указывает на соответствующий строке массив символов. Даже когда мы пишем строковый литерал, например

const char *st = "Цена пирожка\n";

компилятор помещает все символы строки в массив и затем присваивает st адрес первого элемента массива. Как можно работать со строкой, используя такой указатель?

Обычно для перебора символов строки применяется адресная арифметика. Поскольку строка всегда заканчивается нулевым символом, можно увеличивать указатель на 1, пока очередным символом не станет нуль. Например:

while (*st++) { ... }

st разыменовывается, и получившееся значение проверяется на истинность. Любое отличное от нуля значение считается истинным, и, следовательно, цикл заканчивается, когда будет достигнут символ с кодом 0. Операция инкремента ++ прибавляет 1 к указателю st и таким образом сдвигает его к следующему символу.

Вот как может выглядеть реализация функции, возвращающей длину строки. Отметим, что, поскольку указатель может содержать нулевое значение (ни на что не указывать), перед операцией разыменования его следует проверять:

int string_length(const char *st)
{
   int cnt = 0;
   if (st)
      while (*st++)
         ++cnt;
   return cnt;
}

Строка встроенного типа может считаться пустой в двух случаях: если указатель на строку имеет нулевое значение (тогда у нас вообще нет никакой строки) или указывает на массив, состоящий из одного нулевого символа (то есть на строку, не содержащую ни одного значимого символа).

// pc1 не адресует никакого массива символов
char *pc1 = 0;
// pc2 адресует нулевой символ
const char *pc2 = "";

Для начинающего программиста использование строк встроенного типа чревато ошибками из-за слишком низкого уровня реализации и невозможности обойтись без адресной арифметики. Ниже мы покажем некоторые типичные погрешности, допускаемые новичками. Задача проста: вычислить длину строки. Первая версия неверна. Исправьте ее.

#include <iostream>
const char *st = "Цена пирожка\n";
int main() {
  int len = 0;
  while (st++) ++len;
      std::cout << len << ": " << st;
  return 0;
}

В этой версии указатель st не разыменовывается. Следовательно, на равенство 0 проверяется не символ, на который указывает st, а сам указатель. Поскольку изначально этот указатель имел ненулевое значение (адрес строки), то он никогда не станет равным нулю, и цикл будет выполняться бесконечно.

Во второй версии программы эта погрешность устранена. Программа успешно заканчивается, однако полученный результат неправилен. Где мы не правы на этот раз?

#include <iostream>
const char *st = "Цена пирожка\n";
int main() {
  int len = 0;
  while (*st++) ++len;
  std::cout << len << ": " << st << std::endl;
  return 0;
}

Ошибка состоит в том, что после завершения цикла указатель st адресует не исходный символьный литерал, а символ, расположенный в памяти после завершающего нуля этого литерала. В этом месте может находиться что угодно, и выводом программы будет случайная последовательность символов.

Можно попробовать исправить эту ошибку:

st = st – len;
std::cout << len << ": " << st;

Теперь наша программа выдает что-то осмысленное, но не до конца. Ответ выглядит так:

18: ена пирожка

Мы забыли учесть, что заключительный нулевой символ не был включен в подсчитанную длину. st должен быть смещен на длину строки плюс 1. Вот, наконец, правильный оператор:

st = st – len - 1;

а вот и и правильный результат:

18: Цена пирожка

Однако нельзя сказать, что наша программа выглядит элегантно. Оператор

st = st – len - 1;

добавлен для того, чтобы исправить ошибку, допущенную на раннем этапе проектирования программы, – непосредственное увеличение указателя st. Этот оператор не вписывается в логику программы, и код теперь трудно понять. Исправления такого рода часто называют заплатками – нечто, призванное заткнуть дыру в существующей программе. Гораздо лучшим решением было бы пересмотреть логику. Одним из вариантов в нашем случае может быть определение второго указателя, инициализированного значением st:

const char *p = st;

Теперь p можно использовать в цикле вычисления длины, оставив значение st неизменным:

while (*p++)

3.4.2. Класс std::string

Как мы только что видели, применение встроенного строкового типа чревато ошибками и не очень удобно из-за того, что он реализован на слишком низком уровне. Поэтому достаточно распространена разработка собственного класса или классов для представления строкового типа – чуть ли не каждая компания, отдел или индивидуальный проект имели свою собственную реализацию строки. Да что говорить, в предыдущих двух изданиях этой книги мы делали то же самое! Это порождало проблемы совместимости и переносимости программ. Реализация стандартного класса std::string стандартной библиотекой С++ призвана была положить конец этому изобретению велосипедов.

Попробуем специфицировать минимальный набор операций, которыми должен обладать класс std::string:

Класс std::string стандартной библиотеки С++ реализует все перечисленные операции. В данном разделе мы научимся пользоваться основными операциями этого класса.

Для того чтобы использовать объекты класса std::string, необходимо включить соответствующий заголовочный файл:

#include <string>

Вот пример строки из предыдущего раздела, представленной объектом типа std::string и инициализированной строкой символов:

#include <string>
std::string st("Цена пирожка\n");

Длину строки возвращает функция-член size() (длина не включает завершающий нулевой символ).

std::cout << "Длина "
     << st
     << ": " << st.size()
     << " символов, включая символ новой строки\n";

Вторая форма определения строки задает пустую строку:

std::string st2; // пустая строка

Как мы узнаем, пуста ли строка? Конечно, можно сравнить ее длину с 0:

if (! st.size())
// правильно: пустая

Однако есть и специальный метод empty(), возвращающий true для пустой строки и false для непустой:

if (st.empty())
// правильно: пустая

Третья форма конструктора инициализирует объект типа std::string другим объектом того же типа:

std::string st3(st);

Строка st3 инициализируется строкой st. Как мы можем убедиться, что эти строки совпадают? Воспользуемся оператором сравнения (==):

if (st == st3)
// инициализация сработала

Как скопировать одну строку в другую? С помощью обычной операции присваивания:

st2 = st3; // копируем st3 в st2

Для конкатенации строк используется операция сложения (+) или операция сложения с присваиванием (+=). Пусть даны две строки:

std::string s1("hello, ");
std::string s2("world\n");

Мы можем получить третью строку, состоящую из конкатенации первых двух, таким образом:

std::string s3 = s1 + s2;

Если же мы хотим добавить s2 в конец s1, мы должны написать:

s1 += s2;

Операция сложения может конкатенировать объекты класса std::string не только между собой, но и со строками встроенного типа. Можно переписать пример, приведенный выше, так, чтобы специальные символы и знаки препинания представлялись встроенным типом, а значимые слова – объектами класса std::string:

const char *pc = ", ";
std::string s1("hello");
std::string s2("world");

std::string s3 = s1 + pc + s2 + "\n";

Подобные выражения работают потому, что компилятор знает, как автоматически преобразовывать объекты встроенного типа в объекты класса std::string. Возможно и простое присваивание встроенной строки объекту std::string:

std::string s1;
const char *pc = "a character array";
s1 = pc; // правильно

Обратное преобразование, однако, не работает. Попытка выполнить следующую инициализацию строки встроенного типа вызовет ошибку компиляции:

char *str = s1; // ошибка компиляции

Чтобы осуществить такое преобразование, необходимо явно вызвать функцию-член с несколько странным названием c_str():

char *str = s1.c_str(); // почти правильно

Функция c_str() возвращает указатель на символьный массив, содержащий строку объекта std::string в том виде, в каком она находилась бы во встроенном строковом типе.

Приведенный выше пример инициализации указателя char *str все еще не совсем корректен. c_str() возвращает указатель на константный массив, чтобы предотвратить возможность непосредственной модификации содержимого объекта через этот указатель, имеющий тип

const char *

(В следующем разделе мы расскажем о ключевом слове const). Правильный вариант инициализации выглядит так:

const char *str = s1.c_str(); // правильно

К отдельным символам объекта типа std::string, как и встроенного типа, можно обращаться с помощью операции взятия индекса. Вот, например, фрагмент кода, заменяющего все точки символами подчеркивания:

std::string str("fa.disney.com");
int size = str.size();

for (int ix = 0; ix < size; ++ix)
  if (str[ix] == '.')
    str[ix] = '_';

Вот и все, что мы хотели сказать о классе std::string прямо сейчас. На самом деле, этот класс обладает еще многими интересными свойствами и возможностями. Скажем, предыдущий пример реализуется также вызовом одной-единственной функции replace():

replace(str.begin(), str.end(), '.', '_');

replace() – один из обобщенных алгоритмов. Эта функция пробегает диапазон от begin() до end(), которые возвращают указатели на начало и конец строки, и заменяет элементы, равные третьему своему параметру, на четвертый.

Упражнение 3.12: Найдите ошибки в приведенных ниже операторах:

(a) char ch = "The long and winding road";
(b) int ival = &ch;
(c) char *pc = &ival;
(d) std::string st(&ch);
(e) pc = 0; (i) pc = '0';
(f) st = pc; (j) st = &ival;
(g) ch = pc[0]; (k) ch = *pc;
(h) pc = st; (l) *pc = ival;

Упражнение 3.13: Объясните разницу в поведении следующих операторов цикла:

while (st++)
   ++cnt;

while (*st++)
  ++cnt;

Упражнение 3.14

Даны две семантически эквивалентные программы. Первая использует встроенный строковый тип, вторая – класс std::string:

// ***** Реализация с использованием C-строк *****
#include <iostream>
#include <cstring>

int main() {
  int errors = 0;
  const char *pc = "a very long literal string";
  for (int ix = 0; ix < 1000000; ++ix) {
    int len = strlen(pc);
    char *pc2 = new char[len + 1];
    strcpy(pc2, pc);
    if (strcmp(pc2, pc))
      ++errors;
    delete [] pc2;
  }
  std::cout << "C-строки: " << errors << " ошибок.\n";
}

// ***** Реализация с использованием класса std::string *****
#include <iostream>
#include <string>

int main() {
  int errors = 0;
  std::string str("a very long literal string");
  for (int ix = 0; ix < 1000000; ++ix) {
    int len = str.size();
    std::string str2 = str;
    if (str != str2)
  }
  std::cout << "класс string: " << errors << " ошибок.\n;
}

Что эти программы делают? Оказывается, вторая реализация выполняется в два раза быстрее первой. Ожидали ли вы такого результата? Как вы его объясните?

Упражнение 3.15: Могли бы вы что-нибудь улучшить или дополнить в наборе операций класса std::string, приведенных в последнем разделе? Поясните свои предложения.

§ 1.5. Спецификатор const

Возьмем следующий пример кода:

for (int index = 0; index < 512; ++index)
... ;

С использованием литерала 512 связаны две проблемы. Первая состоит в легкости восприятия текста программы. Почему верхняя граница переменной цикла должна быть равна именно 512? Что скрывается за этой величиной? Она кажется случайной...

Вторая проблема касается простоты модификации и сопровождения кода. Предположим, программа состоит из 10 000 строк, и литерал 512 встречается в 4% из них. Допустим, в 80% случаев число 512 должно быть изменено на 1024. Способны ли вы представить трудоемкость такой работы и количество ошибок, которые можно сделать, исправив не то значение?

Обе эти проблемы решаются одновременно: нужно создать объект со значением 512. Присвоив ему осмысленное имя, например bufSize, мы сделаем программу гораздо более понятной: ясно, с чем именно сравнивается переменная цикла.

index < bufSize

В этом случае изменение размера bufSize не требует просмотра 400 строк кода для модификации 320 из них. Насколько уменьшается вероятность ошибок ценой добавления всего одного объекта! Теперь значение 512 локализовано.

int bufSize = 512; // размер буфера ввода
// ...
for (int index = 0; index < bufSize; ++index)
     // ...

Остается одна маленькая проблема: переменная bufSize здесь является l-значением, которое можно случайно изменить в программе, что приведет к трудно отлавливаемой ошибке. Вот одна из распространенных ошибок – использование операции присваивания (=) вместо сравнения (==):

// случайное изменение значения bufSize
if (bufSize = 1)
// ...

В результате выполнения этого кода значение bufSize станет равным 1, что может привести к совершенно непредсказуемому поведению программы. Ошибки такого рода обычно очень тяжело обнаружить, поскольку они попросту не видны.

Использование спецификатора const решает данную проблему. Объявив объект как

const int bufSize = 512; // размер буфера ввода

мы превращаем переменную в константу со значением 512, значение которой не может быть изменено: такие попытки пресекаются компилятором: неверное использование оператора присваивания вместо сравнения, как в приведенном примере, вызовет ошибку компиляции.

// ошибка: попытка присваивания значения константе
if (bufSize = 0) ...

Раз константе нельзя присвоить значение, она должна быть инициализирована в месте своего определения. Определение константы без ее инициализации также вызывает ошибку компиляции:

const double pi; // ошибка: неинициализированная константа

Давайте рассуждать дальше. Явная трансформация значения константы пресекается компилятором. Но как быть с косвенной адресацией? Можно ли присвоить адрес константы некоторому указателю?

const double minWage = 9.60;
// правильно? ошибка?
double *ptr = &minWage;

Должен ли компилятор разрешить подобное присваивание? Поскольку minWage – константа, ей нельзя присвоить значение. С другой стороны, ничто не запрещает нам написать:

*ptr += 1.40; // изменение объекта minWage!

Как правило, компилятор не в состоянии уберечь от использования указателей и не сможет сигнализировать об ошибке в случае подобного их употребления. Для этого требуется слишком глубокий анализ логики программы. Поэтому компилятор просто запрещает присваивание адресов констант обычным указателям.

Что же, мы лишены возможности использовать указатели на константы? Нет. Для этого существуют указатели, объявленные со спецификатором const:

const double *cptr;

где cptr – указатель на объект типа const double. Тонкость заключается в том, что сам указатель – не константа, а значит, мы можем изменять его значение. Например:

const double *pc = 0;
const double minWage = 9.60;
// правильно: не можем изменять minWage с помощью pc
pc = &minWage;
double dval = 3.14;
// правильно: не можем изменять minWage с помощью pc
// хотя dval и не константа
pc = &dval; // правильно
dval = 3.14159; //правильно
*pc = 3.14159; // ошибка

Адрес константного объекта присваивается только указателю на константу. Вместе с тем, такому указателю может быть присвоен и адрес обычной переменной:

pc = &dval;

Константный указатель не позволяет изменять адресуемый им объект с помощью косвенной адресации. Хотя dval в примере выше и не является константой, компилятор не допустит изменения переменной dval через pc. (Опять-таки потому, что он не в состоянии определить, адрес какого объекта может содержать указатель в произвольный момент выполнения программы.)

В реальных программах указатели на константы чаще всего употребляются как формальные параметры функций. Их использование дает гарантию, что объект, переданный в функцию в качестве фактического аргумента, не будет изменен этой функцией. Например:

// В реальных программах указатели на константы чаще всего
// употребляются как формальные параметры функций
int strcmp(const char *str1, const char *str2);

Существуют и константные указатели. (Обратите внимание на разницу между константным указателем и указателем на константу!). Константный указатель может адресовать как константу, так и переменную. Например:

int errNumb = 0;
int *const currErr = &errNumb;

Здесь curErr – константный указатель на неконстантный объект. Это значит, что мы не можем присвоить ему адрес другого объекта, хотя сам объект допускает модификацию. Вот как мог бы быть использован указатель curErr:

do_something();
if (*curErr) {
  errorHandler();
  *curErr = 0; // правильно: обнулим значение errNumb
}

Попытка присвоить значение константному указателю вызовет ошибку компиляции:

curErr = &myErNumb; // ошибка

Константный указатель на константу является объединением двух рассмотренных случаев.

const double pi = 3.14159;
const double *const pi_ptr = &pi;

Ни значение объекта, на который указывает pi_ptr, ни значение самого указателя не может быть изменено в программе.

Упражнение 3.16

Объясните значение следующих пяти определений. Есть ли среди них ошибочные?

(a) int i; (d) int *const cpi;
(b) const int ic; (e) const int *const cpic;
(c) const int *pic;

Упражнение 3.17

Какие из приведенных определений правильны? Почему?

(a) int i = -1;
(b) const int ic = i;
(c) const int *pic = &ic;
(d) int *const cpi = &ic;
(e) const int *const cpic = &ic;

Упражнение 3.18: Используя определения из предыдущего упражнения, укажите правильные операторы присваивания. Объясните.

(a) i = ic;    (d) pic = cpic;
(b) pic = &ic; (i) cpic = &ic;
(c) cpi = pic; (f) ic = *cpic;

§ 1.6. Ссылочный тип

Ссылочный тип, иногда называемый псевдонимом, служит для задания объекту дополнительного имени. Ссылка позволяет косвенно манипулировать объектом, точно так же, как это делается с помощью указателя. Однако эта косвенная манипуляция не требует специального синтаксиса, необходимого для указателей. Обычно ссылки употребляются как формальные параметры функций. В этом разделе мы рассмотрим самостоятельное использование объектов ссылочного типа.

Ссылочный тип обозначается указанием оператора взятия адреса (&) перед именем переменной. Ссылка должна быть инициализирована. Например:

int ival = 1024;
// правильно: refVal - ссылка на ival
int &refVal = ival;
// ошибка: ссылка должна быть инициализирована
int& refVal2;

Хотя, как мы говорили, ссылка очень похожа на указатель, она должна быть инициализирована не адресом объекта, а его значением. Таким объектом может быть и указатель:

int ival = 1024;

// ошибка: refVal имеет тип int, а не int*
int &refVal = &ival;
int *pi = &ival;
// правильно: ptrVal - ссылка на указатель
int *&ptrVal2 = pi;

Определив ссылку, вы уже не сможете изменить ее так, чтобы работать с другим объектом (именно поэтому ссылка должна быть инициализирована в месте своего определения). В следующем примере оператор присваивания не меняет значения refVal, новое значение присваивается переменной ival – ту, которую адресует refVal.

int min_val = 0;
// ival получает значение min_val,
// а не refVal меняет значение на min_val
refVal = min_val;

Все операции со ссылками реально воздействуют на адресуемые ими объекты. В том числе и операция взятия адреса. Например:

refVal += 2;
прибавляет 2 к ival – переменной, на которую ссылается refVal. Аналогично
int ii = refVal;
присваивает ii текущее значение ival,
int *pi = &refVal;
инициализирует pi адресом ival.

Если мы определяем ссылки в одной инструкции через запятую, перед каждым объектом типа ссылки должен стоять амперсанд (&) – оператор взятия адреса (точно так же, как и для указателей). Например:

// определено два объекта типа int
int ival = 1024, ival2 = 2048;

// определена одна ссылка и один объект
int &rval = ival, rval2 = ival2;

// определен один объект, один указатель и одна ссылка
int inal3 = 1024, *pi = ival3, &ri = ival3;

// определены две ссылки
int &rval3 = ival3, &rval4 = ival2;

Константная ссылка может быть инициализирована объектом другого типа (если, конечно, существует возможность преобразования одного типа в другой), а также безадресной величиной – такой, как литеральная константа. Например:

double dval = 3.14159;

// верно только для константных ссылок
const int &ir = 1024;
const int &ir2 = dval;
const double &dr = dval + 1.0;

Если бы мы не указали спецификатор const, все три определения ссылок вызвали бы ошибку компиляции. Однако, причина, по которой компилятор не пропускает таких определений, неясна. Попробуем разобраться.

Для литералов это более или менее понятно: у нас не должно быть возможности косвенно поменять значение литерала, используя указатели или ссылки. Что касается объектов другого типа, то компилятор преобразует исходный объект в некоторый вспомогательный. Например, если мы пишем:

double dval = 1024;
const int &ri = dval;

то компилятор преобразует это примерно так:

int temp = dval;
const int &ri = temp;

Если бы мы могли присвоить новое значение ссылке ri, мы бы реально изменили не dval, а temp. Значение dval осталось бы тем же, что совершенно неочевидно для программиста. Поэтому компилятор запрещает такие действия, и единственная возможность проинициализировать ссылку объектом другого типа – объявить ее как const.

Вот еще один пример ссылки, который трудно понять с первого раза. Мы хотим определить ссылку на адрес константного объекта, но наш первый вариант вызывает ошибку компиляции:

const int ival = 1024;
// ошибка: нужна константная ссылка
int *&pi_ref = &ival;

Попытка исправить дело добавлением спецификатора const тоже не проходит:

const int ival = 1024;
// все равно ошибка
const int *&pi_ref = &ival;

В чем причина? Внимательно прочитав определение, мы увидим, что pi_ref является ссылкой на константный указатель на объект типа int. А нам нужен неконстантный указатель на константный объект, поэтому правильной будет следующая запись:

const int ival = 1024;
// правильно
int *const &piref = &ival;

Между ссылкой и указателем существуют два основных отличия. Во-первых, ссылка обязательно должна быть инициализирована в месте своего определения. Во-вторых, всякое изменение ссылки преобразует не ее, а тот объект, на который она ссылается. Рассмотрим на примерах. Если мы пишем:

int *pi = 0;

мы инициализируем указатель pi нулевым значением, а это значит, что pi не указывает ни на какой объект. В то же время запись

const int &ri = 0; означает примерно следующее: int temp = 0;

const int &ri = temp;

Что касается операции присваивания, то в следующем примере:

int ival = 1024, ival2 = 2048;
int *pi = &ival, *pi2 = &ival2;
pi = pi2;

переменная ival, на которую указывает pi, остается неизменной, а pi получает значение адреса переменной ival2. И pi, и pi2 и теперь указывают на один и тот же объект ival2.

Если же мы работаем со ссылками:

int &ri = ival, &ri2 = ival2;
ri = ri2;

то само значение ival меняется, но ссылка ri по-прежнему адресует ival.

В реальных С++ программах ссылки редко используются как самостоятельные объекты, обычно они употребляются в качестве формальных параметров функций. Например:

// пример использования ссылок
// Значение возвращается в параметре next_value
bool get_next_value(int &next_value);
// перегруженный оператор
Matrix operator+(const Matrix&, const Matrix&);

Как соотносятся самостоятельные объекты-ссылки и ссылки-параметры? Если мы пишем:

int ival;
while (get_next_value(ival)) ...

это равносильно следующему определению ссылки внутри функции:

int &next_value = ival;

Упражнение 3.19

Есть ли ошибки в данных определениях? Поясните. Как бы вы их исправили?

(a) int ival = 1.01;
(b) int &rval1 = 1.01;
(c) int &rval2 = ival;
(d) int &rval3 = &ival;
(e) int *pi = &ival;
(f) int &rval4 = pi;
(g) int &rval5 = pi*;
(h) int &*prval1 = pi;
(i) const int &ival2 = 1;
(j) const int &*prval2 = &ival;

Упражнение 3.20

Если ли среди нижеследующих операций присваивания ошибочные (используются определения из предыдущего упражнения)?

(a) rval1 = 3.14159;
(b) prval1 = prval2;
(c) prval2 = rval1;
(d) *prval2 = ival2;

Упражнение 3.21

Найдите ошибки в приведенных инструкциях:

(a) int ival = 0;
    const int *pi = 0;
    const int &ri = 0;

(b) pi = &ival;
    ri = &ival;
    pi = &rval;

§ 1.7. Тип bool

Объект типа bool может принимать одно из двух значений: true и false. Например:

// инициализация строки
std::string search_word = get_word();

// инициализация переменной found
bool found = false;
std::string next_word;
while (std::cin >> next_word)
  if (next_word == search_word)
     found = true;
// ...
// сокращенная запись: if (found == true)
if (found)
  std::cout << "ok, мы нашли слово\n";
else std::cout << "нет, наше слово не встретилось.\n";

Хотя bool относится к одному из целых типов, он не может быть объявлен как signed, unsigned, short или long, поэтому приведенное определение ошибочно:

// ошибка
short bool found = false;

Объекты типа bool неявно преобразуются в тип int. Значение true превращается в 1, а false – в 0. Например:

bool found = false;
int occurrence_count = 0;

while (/* mumble */)
{
  found = look_for(/* something */);
  // значение found преобразуется в 0 или 1
  occurrence_count += found;
}

Таким же образом значения целых типов и указателей могут быть преобразованы в значения типа bool. При этом 0 интерпретируется как false, а все остальное как true:

// возвращает количество вхождений
extern int find(const std::string&);
bool found = false;
if (found = find("rosebud"))
   // правильно: found == true
// возвращает указатель на элемент
extern int* find(int value);
if (found = find(1024))
  // правильно: found == true

§ 1.8. Перечисления

Нередко приходится определять переменную, которая принимает значения из некоего набора. Скажем, файл открывают в любом из трех режимов: для чтения, для записи, для добавления.

Конечно, можно определить три константы для обозначения этих режимов:

const int input = 1;
const int output = 2;
const int append = 3;

и пользоваться этими константами:

bool open_file(std::string file_name, int open_mode);
// ...
open_file("Phoenix_and_the_Crane", append);

Подобное решение допустимо, но не вполне приемлемо, поскольку мы не можем гарантировать, что аргумент, передаваемый в функцию open_file() равен только 1, 2 или 3.

Использование перечислимого типа решает данную проблему. Когда мы пишем:

enum open_modes{ input = 1, output, append };

мы определяем новый тип open_modes. Допустимые значения для объекта этого типа ограничены набором 1, 2 и 3, причем каждое из указанных значений имеет мнемоническое имя. Мы можем использовать имя этого нового типа для определения как объекта данного типа, так и типа формальных параметров функции:

void open_file(std::string file_name, open_modes om);

input, output и append являются элементами перечисления. Набор элементов перечисления задает допустимое множество значений для объекта данного типа. Переменная типа open_modes (в нашем примере) инициализируется одним из этих значений, ей также может быть присвоено любое из них. Например:

open_file("Phoenix and the Crane", append);

Попытка присвоить переменной данного типа значение, отличное от одного из элементов перечисления (или передать его параметром в функцию), вызовет ошибку компиляции. Даже если попробовать передать целое значение, соответствующее одному из элементов перечисления, мы все равно получим ошибку:

// ошибка: 1 не является элементом перечисления open_modes
open_file("Jonah", 1);

Есть способ определить переменную типа open_modes, присвоить ей значение одного из элементов перечисления и передать параметром в функцию:

open_modes om = input;
  // ...
  om = append;
  open_file("TailTell", om);

Однако получить имена таких элементов невозможно. Если мы напишем оператор вывода:

std::cout << input << " " << om << std::endl;

то все равно получим:

1 3

Эта проблема решается, если определить строковый массив, в котором элемент с индексом, равным значению элемента перечисления, будет содержать его имя. Имея такой массив, мы сможем написать:

std::cout << open_modes_table[input] << " "
   << open_modes_table[om] << std::endl
Будет выведено:
input append

Кроме того, нельзя перебрать все значения перечисления:

// не поддерживается
for (open_modes iter = input; iter != append; ++inter)
// ...

Для определения перечисления служит ключевое слово enum, а имена элементов задаются в фигурных скобках, через запятую. По умолчанию первый из них равен 0, следующий – 1 и так далее. С помощью оператора присваивания это правило можно изменить. При этом каждый следующий элемент без явно указанного значения будет на 1 больше, чем элемент, идущий перед ним в списке. В нашем примере мы явно указали значение 1 для input, при этом output и append будут равны 2 и 3. Вот еще один пример:

// shape == 0, sphere == 1, cylinder == 2, polygon == 3
enum Forms{ share, spere, cylinder, polygon };

Целые значения, соответствующие разным элементам одного перечисления, не обязаны отличаться. Например:

// point2d == 2, point2w == 3, point3d == 3, point3w == 4
enum Points { point2d=2, point2w, point3d=3, point3w=4 };

Объект, тип которого – перечисление, можно определять, использовать в выражениях и передавать в функцию как аргумент. Подобный объект инициализируется только значением одного из элементов перечисления, и только такое значение ему присваивается – явно или как значение другого объекта того же типа. Даже соответствующие допустимым элементам перечисления целые значения не могут быть ему присвоены:

void mumble() {
Points pt3d = point3d; // правильно: pt2d == 3
// ошибка: pt3w инициализируется типом int
Points pt3w = 3;
// ошибка: polygon не входит в перечисление Points
pt3w = polygon;
// правильно: оба объекта типа Points
pt3w = pt3d;
}

Однако в арифметических выражениях перечисление может быть автоматически преобразовано в тип int. Например:

const int array_size = 1024;
// правильно: pt2w преобразуется int
int chunk_size = array_size * pt2w;

§ 1.9. Тип массив

Массив – это набор элементов одного типа, доступ к которым производится по индексу – порядковому номеру элемента в массиве. Например:

int ival;

определяет ival как переменную типа int, а инструкция

int ia[10];

задает массив из десяти объектов типа int. К каждому из этих объектов, или элементов массива, можно обратиться с помощью операции взятия индекса:

ival = ia[2];

присваивает переменной ival значение элемента массива ia с индексом 2. Аналогично

ia[7] = ival;

присваивает элементу с индексом 7 значение ival.

Определение массива состоит из спецификатора типа, имени массива и размера. Размер задает количество элементов массива (не менее 1) и заключается в квадратные скобки. Размер массива нужно знать уже на этапе компиляции, а следовательно, он должен быть константным выражением, хотя не обязательно задается литералом. Вот примеры правильных и неправильных определений массивов:

extern int get_size();

// buf_size и max_files константы
const int buf_size = 512, max_files = 20;
int staff_size = 27;

// правильно: константа
char input_buffer[buf_size];

// правильно: константное выражение: 20 - 3
char *fileTable[max_files-3];

// ошибка: не константа
double salaries[staff_size];

// ошибка: не константное выражение
int test_scores[get_size()];

Объекты buf_size и max_files являются константами, поэтому определения массивов input_buffer и fileTable правильны. А вот staff_size – переменная (хотя и инициализированная константой 27), значит, salaries[staff_size] недопустимо. (Компилятор не в состоянии найти значение переменной staff_size в момент определения массива salaries.)

Выражение max_files-3 может быть вычислено на этапе компиляции, следовательно, определение массива fileTable[max_files-3] синтаксически правильно.

Нумерация элементов начинается с 0, поэтому для массива из 10 элементов правильным диапазоном индексов является не 1 – 10, а 0 – 9. Вот пример перебора всех элементов массива:

int main() {
    const int array_size = 10;
    int ia[array_size];
    for (int ix = 0; ix < array_size; ++ ix)
        ia[ix] = ix;
}

При определении массив можно явно инициализировать, перечислив значения его элементов в фигурных скобках, через запятую:

const int array_size = 3;
int ia[array_size] = { 0, 1, 2 };

Если мы явно указываем список значений, то можем не указывать размер массива: компилятор сам подсчитает количество элементов:

// массив размера 3
int ia[] = { 0, 1, 2 };

Когда явно указаны и размер, и список значений, возможны три варианта. При совпадении размера и количества значений все очевидно. Если список значений короче, чем заданный размер, оставшиеся элементы массива инициализируются нулями. Если же в списке больше значений, компилятор выводит сообщение об ошибке:

// ia ==> { 0, 1, 2, 0, 0 }
const int array_size = 5;
int ia[array_size] = { 0, 1, 2 };

Символьный массив может быть инициализирован не только списком символьных значений в фигурных скобках, но и строковым литералом. Однако между этими способами есть некоторая разница. Допустим,

const char cal[] = {'C', '+', '+' };
const char cal2[] = "C++";

Размерность массива ca1 равна 3, массива ca2 – 4 (в строковых литералах учитывается завершающий нулевой символ). Следующее определение вызовет ошибку компиляции:

// ошибка: строка "Daniel" состоит из 7 элементов
const char ch3[6] = "Daniel";

Массиву не может быть присвоено значение другого массива, недопустима и инициализация одного массива другим. Кроме того, не разрешается использовать массив ссылок. Вот примеры правильного и неправильного употребления массивов:

const int array_size = 3;
int ix, jx, kx;

// правильно: массив указателей типа int*
int *iar [] = { &ix, &jx, &kx };
// error: массивы ссылок недопустимы
int &iar[] = { ix, jx, kx };

int main()
{
  int ia3{ array_size]; // правильно
  // ошибка: встроенные массивы нельзя копировать
  ia3 = ia;
  return 0;
}

Чтобы скопировать один массив в другой, придется проделать это для каждого элемента по отдельности:

const int array_size = 7;
int ia1[] = { 0, 1, 2, 3, 4, 5, 6 };
int main() {
  int ia3[array_size];
  for (int ix = 0; ix < array_size; ++ix)
    ia2[ix] = ia1[ix];
  return 0;
}

В качестве индекса массива может выступать любое выражение, дающее результат целого типа. Например:

int someVal, get_index();
ia2[get_index()] = someVal;

Подчеркнем, что язык С++ не обеспечивает контроля индексов массива – ни на этапе компиляции, ни на этапе выполнения. Программист сам должен следить за тем, чтобы индекс не вышел за границы массива. Ошибки при работе с индексом достаточно распространены. К сожалению, не так уж трудно встретить примеры программ, которые компилируются и даже работают, но тем не менее содержат фатальные ошибки, рано или поздно приводящие к краху.

Упражнение 3.22

Какие из приведенных определений массивов содержат ошибки? Поясните.

(a) int ia[buf_size]; (d) int ia[2 * 7 - 14]
(b) int ia[get_size()]; (e) char st[11] = "fundamental";
(c) int ia[4 * 7 - 14];

Упражнение 3.23

Следующий фрагмент кода должен инициализировать каждый элемент массива значением индекса. Найдите допущенные ошибки:

int main() {
   const int array_size = 10;
   int ia[array_size];
   for (int ix = 1; ix <= array_size; ++ix)
       ia[ia] = ix;
   // ...
}

3.9.1. Многомерные массивы

В С++ есть возможность использовать многомерные массивы, при объявлении которых необходимо указать правую границу каждого измерения в отдельных квадратных скобках. Вот определение двумерного массива:

int ia[4][3];

Первая величина (4) задает количество строк, вторая (3) – количество столбцов. Объект ia определен как массив из четырех строк по три элемента в каждой. Многомерные массивы тоже могут быть инициализированы:

int ia[4][3] = {
    { 0, 1, 2 },
    { 3, 4, 5 },
    { 6, 7, 8 },
    { 9, 10, 11 }
};

Внутренние фигурные скобки, разбивающие список значений на строки, необязательны и используются, как правило, для удобства чтения кода. Приведенная ниже инициализация в точности соответствует предыдущему примеру, хотя менее понятна:

int ia[4][3] = { 0,1,2,3,4,5,6,7,8,9,10,11 };

Следующее определение инициализирует только первые элементы каждой строки. Оставшиеся элементы будут равны нулю:

int ia[4][3] = { {0}, {3}, {6}, {9} };

Если же опустить внутренние фигурные скобки, результат окажется совершенно иным. Все три элемента первой строки и первый элемент второй получат указанное значение, а остальные будут неявно инициализированы 0.

int ia[4][3] = { 0, 3, 6, 9 };

При обращении к элементам многомерного массива необходимо использовать индексы для каждого измерения (они заключаются в квадратные скобки). Так выглядит инициализация двумерного массива с помощью вложенных циклов:

int main() {
   const int rowSize = 4;
   const int colSize = 3;
   int ia[rowSize][colSize];
   for (int = 0; i < rowSize; ++i)
   for (int j = 0; j < colSize; ++j)
   ia[i][j] = i + j j;
}

Конструкция

ia[1, 2]

является допустимой с точки зрения синтаксиса С++, однако означает совсем не то, чего ждет неопытный программист. Это отнюдь не объявление двумерного массива 1 на 2. Агрегат в квадратных скобках – это список выражений через запятую, результатом которого будет последнее значение 2 (оператор запятая). Поэтому объявление ia[1,2] эквивалентно ia[2]. Это еще одна возможность допустить ошибку.

§ 1.10. Взаимосвязь массивов и указателей

Если мы имеем определение массива, то что означает простое указание его имени в программе? Использование идентификатора массива в программе эквивалентно указанию адреса его первого элемента:

int ia[] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };
ia;
&ia[0]

Аналогично обратиться к значению первого элемента массива можно двумя способами:

// оба выражения возвращают первый элемент
*ia;
ia[0];

Чтобы взять адрес второго элемента массива, мы должны написать:

&ia[1];

Как мы уже упоминали раньше, выражение

ia+1;

также дает адрес второго элемента массива. Соответственно, его значение дают нам следующие два способа:

*(ia+1);
ia[1];

Отметим разницу в выражениях:

*ia+1
и
*(ia+1);

Операция разыменования имеет более высокий приоритет, чем операция сложения. Поэтому первое выражение сначала разыменовывает переменную ia и получает первый элемент массива, а затем прибавляет к нему 1. Второе же выражение доставляет значение второго элемента.

Проход по массиву можно осуществлять с помощью индекса, как мы делали это в предыдущем разделе, или с помощью указателей. Например:

#include <iostream>

int main() {
   int ia[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };
   int *pbegin = ia;
   int *pend = ia + 9;
   while (pbegin != pend) {
      std::cout << *pbegin <<;
      ++pbegin;
   }
}

Указатель pbegin инициализируется адресом первого элемента массива. Каждый проход по циклу увеличивает этот указатель на 1, что означает смещение его на следующий элемент. Как понять, где остановиться? В нашем примере мы определили второй указатель pend и инициализировали его адресом, следующим за последним элементом массива ia. Как только значение pbegin станет равным pend, мы узнаем, что массив кончился. Перепишем эту программу так, чтобы начало и конец массива передавались параметрами в некую обобщенную функцию, которая умеет печатать массив любого размера:

#inc1ude <iostream>
void ia_print(int *pbegin, int *pend) {
  while (pbegin != pend) {
     std::cout << *pbegin << ' ';
     ++pbegin;
  }
}

int main() {
   int ia[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };
   ia_print(ia, ia + 9);
}

Наша функция стала более универсальной, однако, она умеет работать только с массивами типа int. Есть способ снять и это ограничение: преобразовать данную функцию в шаблон:

#inc1ude <iostream>
template <class e1emType>
void print(elemType *pbegin, elemType *pend) {
   while (pbegin != pend) {
      std::cout << *pbegin << ' ';
      ++pbegin;
   }
}

Теперь мы можем вызывать нашу функцию print() для печати массивов любого типа:

int main()
{
   int ia[9] = { 0, 1, 1, 2, 3, 5, 8, 13, 21 };
   double da[4] = { 3.14, 6.28, 12.56, 25.12 };
   std::string sa[3] = { "piglet", "eeyore", "pooh" };
   print(ia, ia+9);
   print(da, da+4);
   print(sa, sa+3);
}

Мы написали обобщенную функцию. Стандартная библиотека предоставляет набор обобщенных алгоритмов (мы уже упоминали об этом в разделе 3.4), реализованных подобным образом. Параметрами таких функций являются указатели на начало и конец массива, с которым они производят определенные действия. Вот, например, как выглядят вызовы обобщенного алгоритма сортировки:

#include <algorithm>
int main() {
   int ia[6] = { 107, 28, 3, 47, 104, 76 };

   std::string sa[3] = { "piglet", "eeyore", "pooh" };
   sort(ia, ia+6);
   sort(sa, sa+3);
};

(Мы подробно остановимся на обобщенных алгоритмах в главе 12; в Приложении будут приведены примеры их использования.)

В стандартной библиотеке С++ содержится набор классов, которые инкапсулируют использование контейнеров и указателей. В следующем разделе мы займемся стандартным контейнерным типом std::vector, являющимся объектно-ориентированной реализацией массива.

§ 1.11. Класс std::vector

Использование класса std::vector является альтернативой применению встроенных массивов. Этот класс предоставляет гораздо больше возможностей, поэтому его использование предпочтительней. Однако встречаются ситуации, когда не обойтись без массивов встроенного типа. Одна из таких ситуаций – обработка передаваемых программе параметров командной строки. Класс std::vector, как и класс std::string, является частью стандартной библиотеки С++.

Для использования вектора необходимо включить заголовочный файл:

#include <vector>

Существуют два абсолютно разных подхода к использованию вектора, назовем их идиомой массива и идиомой STL. В первом случае объект класса std::vector используется точно так же, как массив встроенного типа. Определяется вектор заданной размерности:

std::vector<int> ivec(10);

что аналогично определению массива встроенного типа:

int ia[10];

Для доступа к отдельным элементам вектора применяется операция взятия индекса:

void simp1e_examp1e() {
   const int e1em_size = 10;
   std::vector<int> ivec(e1em_size);
   int ia[e1em_size];
   for (int ix = 0; ix < e1em_size; ++ix)
   ia[ix] = ivec[ix];
   // ...
}

Мы можем узнать размерность вектора, используя функцию size(), и проверить, пуст ли вектор, с помощью функции empty(). Например:

void print_vector(std::vector<int> ivec) {
   if (ivec.empty())
     return;
   for (int ix=0; ix < ivec.size(); ++ix)
   std::cout << ivec[ix] << ' ';
}

Элементы вектора инициализируются значениями по умолчанию. Для числовых типов и указателей таким значением является 0. Если в качестве элементов выступают объекты класса, то инициатор для них задается конструктором по умолчанию. Однако инициатор можно задать и явно, используя форму:

std::vector<int> ivec(10, -1);

Все десять элементов вектора будут равны -1.

Массив встроенного типа можно явно инициализировать списком:

int ia[6] = { -2, -1, О, 1, 2, 1024 };

Для объекта класса std::vector аналогичное действие невозможно. Однако такой объект может быть инициализирован с помощью массива встроенного типа:

// 6 элементов ia копируются в ivec
std::vector<int> ivec(ia, ia+6);

Конструктору вектора ivec передаются два указателя – указатель на начало массива ia и на элемент, следующий за последним. В качестве списка начальных значений допустимо указать не весь массив, а некоторый его диапазон:

// копируются 3 элемента: ia[2], ia[3], ia[4]
std::vector<int> ivec(&ia[2], &ia[5]);

Еще одним отличием вектора от массива встроенного типа является возможность инициализации одного объекта типа std::vector другим и использования операции присваивания для копирования объектов. Например:

std::vector<std::string> svec;
void init_and_assign() {
   // один вектор инициализируется другим
   std::vector<std::string> user_names(svec);
   // ...
   // один вектор копируется в другой
   svec = user_names;
}

Говоря об идиоме STL , мы подразумеваем совсем другой подход к использованию вектора. Вместо того чтобы сразу задать нужный размер, мы определяем пустой вектор:

std::vector<std::string> text;

Затем добавляем к нему элементы при помощи различных функций. Например, функция push_back()вставляет элемент в конец вектора. Вот фрагмент кода, считывающего последовательность строк из стандартного ввода и добавляющего их в вектор:

std::string word;
while (std::cin >> word) {
    text.push_back(word);
    // ...
}

Хотя мы можем использовать операцию взятия индекса для перебора элементов вектора:

std::cout << "считаны слова: \n";
for (int ix =0; ix < text.size(); ++ix)
    std::cout << text[ix] << ' ';
std::cout << std::endl;

более типичным в рамках данной идиомы будет использование итераторов:

std::cout << "считаны слова: \n";
for (std::vector<std::string>::iterator it = text.begin(); it != text.end(); ++it)
std::cout << *it << ' ';
std::cout << std::endl;

Итератор – это класс стандартной библиотеки, фактически являющийся указателем на элемент массива.

Выражение

*it;

разыменовывает итератор и дает сам элемент вектора. Инструкция

++it;

сдвигает указатель на следующий элемент. Не нужно смешивать эти два подхода. Если следовать идиоме STL при определении пустого вектора:

std::vector<int> ivec;

будет ошибкой написать:

ivec[0] = 1024;

У нас еще нет ни одного элемента вектора ivec; количество элементов выясняется с помощью функции size().

Можно допустить и противоположную ошибку. Если мы определили вектор некоторого размера, например:

std::vector<int> ia(10);

то вставка элементов увеличивает его размер, добавляя новые элементы к существующим. Хотя это и кажется очевидным, тем не менее, начинающий программист вполне мог бы написать:

const int size = 7;
int ia[size] = { 0, 1, 1, 2, 3, 5, 8 };
std::vector<int> ivec(size);
for (int ix = 0; ix < size; ++ix)
   ivec.push_back(ia[ix]);

Имелась в виду инициализация вектора ivec значениями элементов ia, вместо чего получился вектор ivec размера 14. Следуя идиоме STL, можно не только добавлять, но и удалять элементы вектора.

Упражнение 3.24

Имеются ли ошибки в следующих определениях?

int ia[7] = { 0, 1, 1, 2, 3, 5, 8 };

 (a) std::vector<std::vector<int>> ivec;
 (b) std::vector<int> ivec = { 0, 1, 1, 2, 3, 5, 8 };
 (c) std::vector<int> ivec(ia, ia+7);
 (d) std::vector<std::string> svec = ivec;
 (e) std::vector<std::string> svec(10, std::string("null")); 

Упражнение 3.25

Реализуйте следующую функцию:

bool is_equal(const int* ia, int ia_size, const std::vector<int>& ivec);

Функция is_equal() сравнивает поэлементно два контейнера. В случае разного размера контейнеров хвост более длинного в расчет не принимается. Понятно, что, если все сравниваемые элементы равны, функция возвращает true, если отличается хотя бы один – false. Используйте итератор для перебора элементов. Напишите функцию main(), обращающуюся к is_equal().

§ 1.12. Класс complex

Класс комплексных чисел complex – еще один класс из стандартной библиотеки. Как обычно, для его использования нужно включить заголовочный файл:

#include <complex>

Комплексное число состоит из двух частей – вещественной и мнимой. Мнимая часть представляет собой квадратный корень из отрицательного числа. Комплексное число принято записывать в виде

2 + 3i

где 2 – действительная часть, а 3i – мнимая. Вот примеры определений объектов типа complex:

// чисто мнимое число: 0 + 7-i
complex<double> purei(0, 7);
// мнимая часть равна 0: 3 + Oi
complex<float> rea1_num(3);
// и вещественная, и мнимая часть равны 0: 0 + 0-i
complex<long double> zero;
// инициализация одного комплексного числа другим
complex<double> purei2(purei);

Поскольку complex, как и std::vector, является шаблоном, мы можем конкретизировать его типами float, double и long double, как в приведенных примерах. Можно также определить массив элементов типа complex:

complex<double> conjugate[2] = {
  complex<double >(2, 3),
  complex<double >(2, -3)
};

Вот как определяются указатель и ссылка на комплексное число:

complex<double> *ptr = &conjugate[0];
complex<double>& ref = *ptr;

Комплексные числа можно складывать, вычитать, умножать, делить, сравнивать, получать значения вещественной и мнимой части, итд.

§ 1.13. Директива typedef

Директива typedef позволяет задать синоним для встроенного либо пользовательского типа данных. Например:

typedef double wages;
typedef std::vector<int> vec_int;
typedef vec_int test_scores;
typedef bool in_attendance;
typedef int *Pint;

Имена, определенные с помощью директивы typedef, можно использовать точно так же, как спецификаторы типов:

// double hourly, weekly;
wages hourly, weekly;
// std::vector<int> vecl(10);
vec_int vecl(10);
// std::vector<int> test0(class_size);
const int class_size = 34;
test_scores test0(class_size);
// std::vector<bool> attendance;
std::vector<in_attendance> attendance(class_size);
// int *table[10];
Pint table [10];

Эта директива начинается с ключевого слова typedef, за которым идет спецификатор типа, и заканчивается идентификатором, который становится синонимом для указанного типа.

Для чего используются имена, определенные с помощью директивы typedef? Применяя мнемонические имена для типов данных, можно сделать программу более легкой для восприятия. Кроме того, принято употреблять такие имена для сложных составных типов, в противном случае воспринимаемых с трудом (см. пример в разделе 3.14), для объявления указателей на функции и функции-члены класса (см. раздел 13.6).

Ниже приводится пример вопроса, на который почти все дают неверный ответ. Ошибка вызвана непониманием директивы typedef как простой текстовой макроподстановки. Дано определение:

typedef char *cstring;

Каков тип переменной cstr в следующем объявлении:

extern const cstring cstr;

Ответ, который кажется очевидным:

const char *cstr

Однако это неверно. Спецификатор const относится к cstr, поэтому правильный ответ – константный указатель на char:

char *const cstr;

§ 1.14. Спецификатор volatile

Объект объявляется как volatile (неустойчивый, асинхронно изменяемый), если его значение может быть изменено незаметно для компилятора, например переменная, обновляемая значением системных часов. Этот спецификатор сообщает компилятору, что не нужно производить оптимизацию кода для работы с данным объектом.

Спецификатор volatile используется подобно спецификатору const:

volatile int disp1ay_register;
volatile Task *curr_task;
volatile int ixa[max_size];
volatile Screen bitmap_buf;

display_register – неустойчивый объект типа int. curr_task – указатель на неустойчивый объект класса Task. ixa – неустойчивый массив целых, причем каждый элемент такого массива считается неустойчивым. bitmap_buf – неустойчивый объект класса Screen, каждый его член данных также считается неустойчивым.

Единственная цель использования спецификатора volatile – сообщить компилятору, что тот не может определить, кто и как может изменить значение данного объекта. Поэтому компилятор не должен выполнять оптимизацию кода, использующего данный объект.

§ 1.15. Класс pair

Класс pair (пара) стандартной библиотеки С++ позволяет нам определить одним объектом пару значений, если между ними есть какая-либо семантическая связь. Эти значения могут быть одинакового или разного типа. Для использования данного класса необходимо включить заголовочный файл:

#include <utility>

Например, инструкция

pair<std::string, std::string> author("James", "Joyce");

создает объект author типа pair, состоящий из двух строковых значений.

Отдельные части пары могут быть получены с помощью членов first и second:

std::string firstBook;

if (Joyce.first == "James" && Joyce.second == "Joyce")
firstBook = "Stephen Hero";

Если нужно определить несколько однотипных объектов этого класса, удобно использовать директиву typedef:

typedef pair<std::string, std::string> Authors;
Authors proust("marcel", "proust");
Authors joyce("James", "Joyce");
Authors musil("robert", "musi1");

Вот другой пример употребления пары. Первое значение содержит имя некоторого объекта, второе – указатель на соответствующий этому объекту элемент таблицы.

class EntrySlot;
extern EntrySlot* look_up(std::string);
typedef pair<std::string, EntrySlot*> SymbolEntry;

SymbolEntry current_entry("author", 1ook_up("author"));
// ...
if (EntrySlot *it = 1ook_up("editor"))
{
   current_entry.first = "editor";
   current_entry.second = it;
}

(Мы вернемся к рассмотрению класса pair в разговоре о контейнерных типах в главе 6 и об обобщенных алгоритмах в главе 12.)

§ 1.16. Типы классов

Механизм классов позволяет создавать новые типы данных; с его помощью введены типы std::string, std::vector, complex и pair, рассмотренные выше. Здесь мы, основываясь на объектном подходе, создадим простой класс String, реализация которого поможет понять, в частности, перегрузку операций. Мы дали краткое описание класса для того, чтобы приводить более интересные примеры. Читатель, только начинающий изучение С++, может пропустить этот раздел и подождать более систематического описания классов в следующих главах.)

Наш класс String должен поддерживать инициализацию объектом класса String, строковым литералом и встроенным строковым типом, равно как и операцию присваивания ему значений этих типов. Мы используем для этого конструкторы класса и перегруженную операцию присваивания. Доступ к отдельным символам String будет реализован как перегруженная операция взятия индекса. Кроме того, нам понадобятся: функция size() для получения информации о длине строки; операция сравнения объектов типа String и объекта String со строкой встроенного типа; а также операции ввода/вывода нашего объекта. В заключение мы реализуем возможность доступа к внутреннему представлению нашей строки в виде строки встроенного типа.

Определение класса начинается ключевым словом class, за которым следует идентификатор – имя класса, или типа. В общем случае класс состоит из секций, предваряемых словами public (открытая) и private (закрытая). Открытая секция, как правило, содержит набор операций, поддерживаемых классом и называемых методами или функциями-членами класса. Эти функции-члены определяют открытый интерфейс класса, другими словами, набор действий, которые можно совершать с объектами данного класса. В закрытую секцию обычно включают данные-члены, обеспечивающие внутреннюю реализацию. В нашем случае к внутренним членам относятся _string – указатель на char, а также _size типа int. _size будет хранить информацию о длине строки, а _string – динамически выделенный массив символов. Вот как выглядит определение класса:

#inc1ude <iostream>
class String;
std::istream& operator>>(std::istream&, String&);
std::ostream& operator<<(std::ostream&, const String&);
class String {
public:
   // набор конструкторов
   // для автоматической инициализации
   // String strl; // String()
   // String str2("literal"); // String(const char*);
   // String str3(str2); // String(const String&);
   String();
   String(const char*);
   String(const String&);

   // деструктор
   ~String();
   // операторы присваивания
   // strl = str2
   // str3 = "a string literal"
   String& operator=(const String&);
   String& operator=(const char*);
   // операторы проверки на равенство
   // strl == str2;
   // str3 == "a string literal";
   bool operator==(const String&);
   bool operator==(const char*);
   // перегрузка оператора доступа по индексу
   // strl[0] = str2[0];
   char& operator[](int);
   // доступ к членам класса
   int size() { return _size; }
   char* c_str() { return _string; }

private:
   int _size;
   char *_string;
}

Класс String имеет три конструктора. Механизм перегрузки позволяет определять несколько реализаций функций с одним именем, если все они различаются количеством и/или типами своих параметров. Первый конструктор

String();

является конструктором по умолчанию, потому что не требует явного указания начального значения. Когда мы пишем:

String str1;

для str1 вызывается такой конструктор.

Два оставшихся конструктора имеют по одному параметру. Так, для

String str2("строка символов");

вызывается конструктор

String(const char*);

а для

String str3(str2);

конструктор

String(const String&);

Тип вызываемого конструктора определяется типом фактического аргумента. Последний из конструкторов, String(const String&), называется копирующим, так как он инициализирует объект копией другого объекта.

Если же написать:

String str4(1024);

то это вызовет ошибку компиляции, потому что нет ни одного конструктора с параметром типа int.

Объявление перегруженного оператора имеет следующий формат:

return_type operator op (parameter_list);

где operator – ключевое слово, а op – один из предопределенных операторов: +, =, ==, [] и так далее. (Точное определение синтаксиса см. в главе 15.) Вот объявление перегруженного оператора взятия индекса:

char& operator[] (int);

Этот оператор имеет единственный параметр типа int и возвращает ссылку на char. Перегруженный оператор сам может быть перегружен, если списки параметров отдельных конкретизаций различаются. Для нашего класса String мы создадим по два различных оператора присваивания и проверки на равенство.

Для вызова функции-члена применяются операторы доступа к членам – точка (.) или стрелка (->). Пусть мы имеем объявления объектов типа String:

String object("Danny");
  String *ptr = new String ("Anna");
  String array[2];
  //Вот как выглядит вызов функции size() для этих объектов:
  std::vector<int> sizes(3);
  // доступ к члену для objects (.);
  // objects имеет размер 5
  sizes[0] = object.size();

// доступ к члену для pointers (->)
// ptr имеет размер 4
sizes[1] = ptr->size();

// доступ к члену (.)
// array[0] имеет размер 0
sizes[2] = array[0].size();

Она возвращает соответственно 5, 4 и 0.

Перегруженные операторы применяются к объекту так же, как обычные:

String namel("Yadie");
String name2("Yodie");
// bool operator==(const String&)
if (namel == name2)
   return;
else
   // String& operator=(const String&)
   namel = name2;

Объявление функции-члена должно находиться внутри определения класса, а определение функции может стоять как внутри определения класса, так и вне его. (Обе функции size() и c_str() определяются внутри класса.) Если функция определяется вне класса, то мы должны указать, кроме всего прочего, к какому классу она принадлежит. В этом случае определение функции помещается в исходный файл, допустим, String.cpp, а определение самого класса – в заголовочный файл (String.h в нашем примере), который должен включаться в исходный:

// содержимое исходного файла: String.С
// включение определения класса String
#inc1ude "String.h"
// включение определения функции strcmp()
#inc1ude <cstring>
bool // тип возвращаемого значения
String:: // класс, которому принадлежит функция
operator== // имя функции: оператор равенства
(const String &rhs) // список параметров
{
  if (_size != rhs._size)
     return false;
  return strcmp(_strinq, rhs._string) ?
     false : true;
}

Напомним, что strcmp() – функция стандартной библиотеки С. Она сравнивает две строки встроенного типа, возвращая 0 в случае равенства строк и ненулевое значение в случае неравенства. Условный оператор (?:) проверяет значение, стоящее перед знаком вопроса. Если оно истинно, возвращается значение выражения, стоящего слева от двоеточия, в противном случае – стоящего справа. В нашем примере значение выражения равно false, если strcmp() вернула ненулевое значение, и true – если нулевое.

Операция сравнения довольно часто используется, реализующая ее функция получилась небольшой, поэтому полезно объявить эту функцию встроенной (inline). Компилятор подставляет текст функции вместо ее вызова, поэтому время на такой вызов не затрачивается. (Встроенные функции рассматриваются в разделе 7.6.) Функция-член, определенная внутри класса, является встроенной по умолчанию. Если же она определена вне класса, чтобы объявить ее встроенной, нужно употребить ключевое слово inline:

inline bool String::operator==(const String &rhs) {
   // то же самое
}

Определение встроенной функции должно находиться в заголовочном файле, содержащем определение класса. Переопределив оператор == как встроенный, мы должны переместить сам текст функции из файла String.cpp в файл String.h.

Ниже приводится реализация операции сравнения объекта String со строкой встроенного типа:

inline bool String::operator==(const char *s) {
   return strcmp(_string, s) ? false : true;
}

Имя конструктора совпадает с именем класса. Считается, что он не возвращает значение, поэтому не нужно задавать возвращаемое значение ни в его определении, ни в его теле. Конструкторов может быть несколько. Как и любая другая функция, они могут быть объявлены встроенными.

#include <cstring>
// default constructor
inline String::String() {
   _size = 0;
   _string = 0;
}

inline String::String(const char *str) {
   if (! str) {
     _size = 0; _string = 0;
   } else {
     _size = str1en(str);
     _string = new char[_size + 1];
     strcpy(_string, str);
   }
}

// copy constructor
inline String::String(const String &rhs) {
  size = rhs._size;
  if (! rhs._string)
     _string = 0;
  else {
     _string = new char[_size + 1];
      strcpy(_string, rhs._string);
  }
}

Поскольку мы динамически выделяли память с помощью оператора new, необходимо освободить ее вызовом delete, когда объект String нам больше не нужен. Для этой цели служит еще одна специальная функция-член – деструктор, автоматически вызываемый для объекта в тот момент, когда этот объект перестает существовать. (См. главу 7 о времени жизни объекта.) Имя деструктора образовано из символа тильды (~) и имени класса. Вот определение деструктора класса String. Именно в нем мы вызываем операцию delete, чтобы освободить память, выделенную в конструкторе:

  inline String::~String() { delete [] _string; }
}

В обоих перегруженных операторах присваивания используется специальное ключевое слово this.

Когда мы пишем:

String namel("orville"), name2("wilbur");

namel = "Orville Wright";

this является указателем, адресующим объект name1 внутри тела функции операции присваивания.

this всегда указывает на объект класса, через который происходит вызов функции. Если

ptr->size();

obj[1024];

то внутри size() значением this будет адрес, хранящийся в ptr. Внутри операции взятия индекса this содержит адрес obj. Разыменовывая this (использованием *this), мы получаем сам объект. (Указатель this детально описан в разделе 13.4.)

inline String& String::operator=(const char *s) {
   if (! s) {
     _size = 0;
     delete [] _string;
     _string = 0;
   }
   else {
     _size = str1en(s);
     delete [] _string;
     _string = new char[_size + 1];
     strcpy(_string, s);
   }
   return *this;
}

При реализации операции присваивания довольно часто допускают одну ошибку: забывают проверить, не является ли копируемый объект тем же самым, в который происходит копирование. Мы выполним эту проверку, используя все тот же указатель this:

inline String& String::operator=(const String &rhs) {
   // в выражении
   // namel = *pointer_to_string
   // this представляет собой name1,
   // rhs - *pointer_to_string.
   if (this != &rhs) {

Вот полный текст операции присваивания объекту String объекта того же типа:

inline String& String::operator=(const String &rhs) {
   if (this != &rhs) {
      delete [] _string;
      _size = rhs._size;
      if (! rhs._string)
         _string = 0;
      else {
         _string = new char[_size + 1];
         strcpy(_string, rhs._string);
      }
   }
   return *this;
}

Операция взятия индекса практически совпадает с ее реализацией для массива Array:

#include <cassert>
inline char& String::operator[] (int elem) {
  assert(elem >= 0 && elem < _size);
  return _string[elem];
}

Операторы ввода и вывода реализуются как отдельные функции, а не члены класса. (О причинах этого мы поговорим в разделе 15.2. В разделах 20.4 и 20.5 рассказывается о перегрузке операторов ввода и вывода библиотеки iostream.) Наш оператор ввода может прочесть не более 4095 символов. setw() – предопределенный манипулятор, он читает из входного потока заданное число символов минус 1, гарантируя тем самым, что мы не переполним наш внутренний буфер inBuf. (В главе 20 манипулятор setw() рассматривается детально.) Для использования манипуляторов нужно включить соответствующий заголовочный файл:

#include <iomanip>

inline std::istream& operator>>(std::istream &io, String &s) {
   // искусственное ограничение: 4096 символов
   const int 1imit_string_size = 4096;
   char inBuf[limit_string_size];
   // setw() входит в библиотеку iostream
   // он ограничивает размер читаемого блока до 1imit_string_size-l
   io >> std::setw(1imit_string_size) >> inBuf;
   s = mBuf; // String::operator=(const char*);
   return io;
}

Оператору вывода необходим доступ к внутреннему представлению строки String. Так как operator<< не является функцией-членом, он не имеет доступа к закрытому члену данных _string. Ситуацию можно разрешить двумя способами: объявить operator<< дружественным классу String, используя ключевое слово friend (дружественные отношения рассматриваются в разделе 15.2), или реализовать встраиваемую (inline) функцию для доступа к этому члену. В нашем случае уже есть такая функция: c_str() обеспечивает доступ к внутреннему представлению строки. Воспользуемся ею при реализации операции вывода:

inline std::ostream& operator<<(std::ostream& os, const String &s) {
   return os << s.c_str();
}

Ниже приводится пример программы, использующей класс String. Эта программа берет слова из входного потока и подсчитывает их общее число, а также количество слов "the" и "it" и регистрирует встретившиеся гласные.

#include <iostream>
#inc1ude "String.h"
int main() {
   int aCnt = 0, eCnt = 0, iCnt = 0, oCnt = 0, uCnt = 0,
   theCnt = 0, itCnt = 0, wdCnt = 0, notVowel = 0; 
   // Слова "The" и "It"
   // будем проверять с помощью operator==(const char*)
   String but, the("the"), it("it");
   // operator>>(std::ostream&, String&)
   while (std::cin >> buf) {
      ++wdCnt;

      // operator<<(std::ostream&, const String&)
      std::cout << buf << ' ';

      if (wdCnt % 12 == 0)
         std::cout << std::endl;
      // String::operator==(const String&) and
      // String::operator==(const char*);
      if (buf == the | | buf == "The")
         ++theCnt;
      else
      if (buf == it || buf == "It")
         ++itCnt;
   // invokes String::s-ize()
   for (int ix =0; ix < buf.sizeO; ++ix) {
      // invokes String:: operator [] (int)
      switch (buf[ix]) {
         case 'a': case 'A': ++aCnt; break;
         case 'e': case 'E': ++eCnt; break;
         case 'i': case 'I': ++iCnt; break;
         case 'o': case '0': ++oCnt; break;
         case 'u': case 'U': ++uCnt; break;
         default: ++notVowe1; break;
       }
     }
   }
   // operator<<(std::ostream&, const String&)
   std::cout << "\n\n"
      << "Слов: " << wdCnt << "\n\n"
      << "the/The: " << theCnt << '\n'
      << "it/It: " << itCnt << "\n\n"
      << "согласных: " << notVowel << "\n\n"
      << "a: " << aCnt << '\n'
      << "e: " << eCnt << '\n'
      << "i: " << ICnt << '\n'
      << "o: " << oCnt << '\n'
      << "u: " << uCnt << std::endl;
}

Протестируем программу: предложим ей абзац из детского рассказа. Вот результат работы программы:

Alice Emma has long flowing red hair. Her Daddy says when the wind blows through her hair, it looks almost alive, 1ike a fiery bird in flight. A beautiful fiery bird, he tells her, magical but untamed. "Daddy, shush, there is no such thing," she tells him, at the same time wanting him to tell her more. Shyly, she asks, "I mean, Daddy, is there?" Слов: 65 the/The: 2 it/It: 1 согласных: 190 a: 22 e: 30 i: 24 о: 10 u: 7

Упражнение 3.26: В наших реализациях конструкторов и операций присваивания содержится много повторов. Попробуйте вынести повторяющийся код в отдельную закрытую функцию-член.

Упражнение 3.27: Модифицируйте тестовую программу так, чтобы она подсчитывала и согласные b, d, f, s, t.

Упражнение 3.28: Напишите функцию-член, подсчитывающую количество вхождений символа в строку String, используя следующее объявление:

class String {
public:
   // ...
   int count(char ch) const;
   // ...
};

Упражнение 3.29: Реализуйте оператор конкатенации строк (+) так, чтобы он конкатенировал две строки и возвращал результат в новом объекте String. Вот объявление функции:

class String {
public:
   // ...
   String operator+(const String &rhs) const;
   // ...
};